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Within the framework of the effective mass approximation, the electronic and optical properties of an electron confined in a 
spherical ZnO/ZnS multi-shell Quantum dot confined in a parabolic potential are investigated. We carry on the numerical 
calculations using the finite difference method (FDM) in order to find the electron’s energy eigenvalues and eigenstates, 
required in the computation of the binding energy for to the ground state and other excited states, in addition to the 
transition dipole moment (TDM) along the z-direction for the (1s) to (1p) transition state, under the influence of a perturbing 
potential corresponding to an off-center donor impurity, then we use all those parameters to compute the linear absorption 
coefficient for multiple impurity positions along the z-axis. The results show that the variation of the donor impurity’s position 
does have an impact on the electronic and optical properties of the confined electron, even though all the other parameters 
are kept fixed. 
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1. Introduction 
 

Quantum dot are zero-dimensional structures that are 

intermediate between solids and atoms, where the electron 

motion is restricted in all three dimensions granting them 

remarkably different optical properties in comparison with 

their bulk counterpart. They have gained considerable 

attention in recent years, due to their potential applications 

in optoelectronic and photonic devices [1–8]. The ab initio 

calculation of colloidal semiconductor QDs, such as DFT 

[9] and atomistic pseudopotential approach [10], has been 

performed to predict electronic and optical properties as a 

function of several structure parameters such as the size 

and material composition of the dot, however they require 

heavy mathematical and computational complexity [11–

13] in comparison with the framework of the effective 

mass approximation (EMA) which provides reliable 

calculation results of the energies and wave functions of 

the electron/hole states [14]. 

 Quantum dots are usually coated with one or multiple 

different semiconductor material with a wider bandgap in 

order to yield a layer that passivates surface defects and 

thus improves the luminescence efficiency [15]. Adding 

more layers to a single material quantum dot gives a 

greater active volume which increase the sensitivity of the 

nano-device [16]. In order to avoid the imperfections in 

such heterostructures like strain [17,18] which is induced 

by lattice mismatch at the interface, the material’s crystal 

structure must be the same for all layers while the lattice 

constants should not differ by more than 12% to allow for 

the epitaxial growth of the shell [19].  

Introducing a hydrogenic donor impurity can alter the 

electronic and optical properties of low-dimensional 

systems, as proven by the results shown in the earliest 

works regarding this subject made by Bastard and others 

[20,21]. Most theoretical works have been made on 

shallow donors in spherical QDs employing perturbation 

theory [22–26] or variational approaches [27–33], in 

addition to employing different confining potentials forms, 

such as the parabolic confinement potential [34,36], and 

rectangular parallelepiped shaped QD [37]. Several 

numerical methods were employed to solve the 

Schrodinger equation associated with a donor impurity in a 

multi-shell quantum dots, Boz et al. studied the binding 

energies of a spherical MSQD using a fourth-order Runge-

Kutta method [38], while Şahin et al. carried out his 

calculation using the Shooting method [35], whereas Zeng 

et al. used the numerical potential morphing method 

(PMM) [39]. 

So many authors have reported the optical properties 

of a single electron confined in either a single or a multi-

shell quantum dots MSQD, all cases are either under the 

influence of a donor impurity or without [39–41], while 

Yakar et al. investigated the optical and electronic 

properties of two-electron quantum dot confined first by 

an infinite spherical potential surface [42] then looked at 

the effects of a parabolic potential on the ground and 

excited energy states with the presence of an impurity 

inside an infinite spherical confining potential well [43]. 

In the present paper we carry out a detailed study of 

the electronic and optical properties of an MSQD with a 

parabolic confinement potential for cases with and without 

an off-center hydrogenic donor impurity. In this context, 
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the intersublevel linear absorption coefficient is calculated 

as a function of photon energy and layer thicknesses. For 

this purpose, the electronic energy levels and their wave 

functions are determined in the framework of the effective 

mass approximation using the finite difference method 

(FDM). The results are presented comparatively for cases 

with and without the donor impurity. 

 
 
2. Theoretical framework 
 

We present in this study an electron confined in an 

isolated spherical multi-shell quantum dot with a parabolic 

confining potential with the core radii R1 and the well 

width with thickness Δ2 both have ZnO material, whilst 

the barrier thickness Δ1 and the coating layer thickness Δ3 

both host ZnS material with a greater energy gap 

compared to ZnO, as shown in Fig. 1. 

 

 
 

Fig. 1. Cross section of a spherical multi-shell quantum dot 

 

Such system can be described by solving the 

unperturbed Hamiltonian with a position dependent 

effective mass which is given in the form suggested by 

BenDaniel and Duke [44]: 
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where the first term is the kinetic energy operator for a 

position dependent effective mass, while Vp(r) is the 

parabolic confining potential [35], it can be written as 

follows:  
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where 
2

RR
p 32

0


 , and where V0 is the band offset, 

which is equal to the height of the barrier potential 

trapping the electrons inside ZnO surrounded by ZnS, it is 

in general defined as the difference between the lowest 

value of both material's conduction bands as long as their 

Fermi Level is aligned equally, since we are in the 

Thermodynamic equilibrium, which implies that no 

current flows throughout the hetero-structure, or we might 

use the Anderson rule despite its limitation, which require 

the knowledge of the electron affinity of each material 

[45]. 

 

 
 

Fig. 2. ZnO/ZnS Multi-Shell Quantum dot with a 

parabolic confining potential with a narrow internal ZnS 

barrier thickness 

 

The effective mass is defined in the same manner as: 

 

  























43
*
4

32
*
3

21
*
2

1
*
1

*
e

RrRm

RrRm

RrRm

Rr0m

rm  (3) 

 

The Eigen states  0n are solutions of the 

unperturbed Hamiltonian H0 satisfying: 
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We generate the radial part of the unperturbed states 
 0n  using the Finite Difference Method (FDM), while 

the angular part is represented by spherical harmonics. 

The total Hamiltonian which contains the donor 

impurity as a perturbation is: 

 

  rVHH 01   (5) 

 

where V(r) is the perturbing symmetry, which is a donor 

impurity that can vary its position across the Multi-Shell 

Quantum dot, defined as follows: 
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In spherical coordinates, the expansion of the Green's 

function is: 
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where (r0 θ0 φ0) are the coordinates of the donor impurity 

inside the CSSS Quantum dot, each coordinate is 

associated with a specific quantum number. 

From here on we change the notation of the zeroth 

order states to the following   nlmn 0  , in order to 

keep track of the different states we are working with. 

Then we calculate the zeroth order binding energy which 

is the expectation value of the potential V(r) with states 

with the same quantum numbers, without taking account 

the magnetic quantum number m as follows: 

 

   nlmrVnlmEb
nlm   (8) 

 

We can use the perturbed states to compute the first 

order binding energy, which is needed for the (s) 

electronic states, since the expectation value using (s) 

states gives less accurate results, in addition to not 

including any angular part. Gathering both energy values 

found in Eq. (4) and (8) will give us the total energy as 

follows: 
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In order to see the influence an off-center donor 

impurity hold over intraband transition in the conduction 

band, we need to calculate each corresponding transition's 

dipole moment (TDM), which give us an idea of either the 

transition is even possible to occur or how weak the 

transition is compare to other in the same vicinity, we need 

to use perturbed Eigen states, which are written up to the 

first order as: 
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Thus by using Eq. (10) we can write the transition 

dipole moment (TDM) along the direction z as follows: 
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Eq. (11) can be expressed with respect to the 

unperturbed states up to the first order as follows: 
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Evaluating Eq. (12) for a (n100) to (n210) transition 

can be expressed as follows: 
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The linear Absorption coefficient is given as follows:   
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where χ (1)

e
 (ω) is the first order electric susceptibility in the 

frequency domain, it can be obtained by solving a two 

level system master equation, using a perturbing electric 

field with frequency ω, it can written as follows: 
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where Mif is the Transition dipole moment chosen along 

the z-direction, from an initial state (i) to a final state (f), 

induced by the external electric field polarized in the same 

direction, it’s given as follows: 

 

 
z
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while Гif is the inverse of the state’s lifetime, given as the 

off diagonal eigenvalue of the Hermitian damping 

operator ̂ , given as follows: 

 

 iˆfif   (17) 

 

And is the charge carrier density, and nr is the 

refractive index and c is the speed of light. 
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3. Results and discussion 
 
In order to figure out the effects of shifting the donor 

impurity off the center along the z-direction (θ0=0) on the 
electronic and optical properties of an electron confined in 
a Multi-Shell quantum dot with a parabolic potential, we 
compute the unperturbed wave function using the finite 
difference method, which we’ll be using as basis for 
computing the expectation values required in the 
perturbation method, we take all the parameters from this 
reference [39], starting with the offset potential which is 
chosen to be V0=292.8meV, as for the electron density 
σv=1.7×1024m-3, the relaxation time T12=1ps, and the 
refractive index is nr=2.9629, the relative dielectric 
constants of ZnO and ZnS, respectively ε1=ε3=8.66ε0, 
ε2=ε4=8.9ε0, where ε0 is the vacuum permittivity. The 
electron effective mass is taken to be m*

1
  = m*

3
 = 0.265m0 

and m*

2
 = m*

4
  = 0.24m0, where m0 is the free electron mass. 

All probability densities considered in this simulation 
are concentrated around the z-axis since the magnetic 
quantum number m is taken to be zero, with the exception 
of the (s) states which have a spherical symmetry, we will 
carry out the computation using two values of the interior 
ZnO barrier thickness Δ1, first we take a small thickness 
equal to Δ1=0.5nm then we change it to a slightly bigger 
value Δ1=1.25nm while keeping the ZnO well thickness 
around Δ2=2.0nm and fixing the outer ZnS shell at 
Δ3=2nm, to prevent the electron from escaping outside of 
the dot, while fixing the outer radius of the MSQD at 
R4=6nm, which means that the part added to ZnS barrier 
thickness is taken from the core radii R1 and vice versa. 

 

 
(a) 

 
(b) 

 

Fig. 3. Unperturbed probability density for n=1 while (a) 

Δ1=0.5nm (b) Δ1=1.25nm (color online) 

Fig. 3 gives us the ground level (n=1) electron’s 

probability density for an electron confined in a MSQD 

with a parabolic potential, for a couple of ZnS barrier 

thicknesses of 0.5nm and 1.25nm, first we take the ZnS 

barrier’s thickness equal to Δ1=0.5nm which is shown in 

Fig. 3(a), for the ground state (1s), we see that there’s a 

high probability density both at the core and the well with 

a lower value at the interface between them, which is due 

to quantum tunneling, since the electron doesn’t have the 

minimum energy required to escape the well, as we make 

ℓ different than zero, we observe that the probability 

density shift to the right away from the center, with an 

increase in the magnitude of the probability density as 

shown in Fig. 3(a), as a good amount of the probability 

once reside at the core ZnO transferred to ZnO well, it’s 

worth noting that the first three states (1s), (1p) and (1d) 

with confinement energy respectively 174.76meV, 

218.24meV and 286.16meV are all situated in the ZnO 

well with a thickness of 2nm, they all lack energy 

necessary in order to escape the well, which is surrounded 

by ZnS barriers with a height of 292.8meV, however the 

fourth state (1f) have an energy which surpasses the height 

of the well about 374.43meV, which can be confirmed by 

Fig. 3(a) since most of the probability density is located at 

the third ZnO/ZnS interface. 

 

 
(a) 

 
 

(b) 

 
Fig. 4. Unperturbed probability density for n=2 while (a) 

Δ1=0.5nm (b) Δ1=1.25nm (color online) 
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As we thicken the ZnS barrier to Δ1=1.25nm, we 

observe that the ground state probability density have 

dropped noticeably at the core ZnO, as the probability of 

quantum tunneling gets exponentially smaller when the 

barrier gets larger, thus the electron needs to rely only on 

the energy gained by confinement effect in order to spread 

the probability density across the quantum dot, which is 

about 179.25meV for the (1s) state, definitely less than the 

barrier height, the same thing can be said about the (1p) 

and the (1d) states with energy respectively about 

219.62meV and 286.71meV, even though they benefit an 

energy increase because of to the built-in spherical 

potential, they get pushed away from the center as a 

consequence, which render their bound state considerably 

weaker, the (1f) state electron possess energy higher than 

the built in potential, about 374.64meV, however it also 

moves away from the center. As the electron get excited to 

the second principal energy level (n=2), we observe an 

increase in the confinement energy of the electron, 

packaged with its corresponding probability density 

distribution, which is split between two specific points 

where the highest density is always closer to the center, we 

see from Fig. 4 that the only apparent change in any state 

triggered by a change in the barrier thickness is displayed 

by the (2s) state and some minor differences for the (2p) 

state, we observe that the majority of the probability 

density is located at the core material for both barrier 

thicknesses for (2s) state, however when Δ1=0.5nm we see 

a further increase in the probability density at the center 

while the confinement energy decrease to 380.21meV 

when we compare it with the case where Δ1=1.25nm in 

which the energy equal to 421.52meV. We observe a 

somewhat similar behavior for the (2p) state, as we see an 

increase in the magnitude of the probability density toward 

the center of the dot, and a slight lowering of energy from 

491.28meV to 484.11meV when we reduce the thickness 

Δ1 from 1.25nm to 0.5nm. 

 

 

 
 

(a)                                                                                  (b) 
 

Fig. 5. Variation of multiple states Binding Energy for a R4=6nm Multi-Shell Quantum dot, when Δ1= 0.5nm (dash lines) and 

Δ1=1.25nm (continuous lines) (color online) 

 

Fig. 5 shows the variation of the binding energy as a 

function of the impurity’s position along the z-direction 

for two different ZnS barrier thicknesses, first we tackle 

the case when the barrier thickness equal to Δ1=1.25nm 

(straight line), then we compare it to the other case where 

Δ1=0.5nm (dash line), when we start off with the ground 

level (n=1) given in Fig. 5(a), we observe that the ground 

state energy start with a high binding energy value around 

65.68meV when compared to the other excited states, as 

we begin to shift the impurity away from the center, we 

see a smooth energy increase for all states, especially a 

significant one for the ground state (1s), this behavior can 

be explained by comparing the position where the 

probability density peaks for all corresponding states with 

the points where the binding energy summit, we see in Fig. 

3(b) that the highest probability density is located in the 

Δ2=2nm ZnO well region, which indicate an interaction 

occurrence between the impurity and the electron density 

in that layer, which rises the binding energy to a maximal 

value of 93.54meV, 67.52meV, 67.93meV and 66.05meV 

respectively for the (1s), (1p), (1d) and (1f), as we keep 

moving the impurity away from the center the binding 

energy decrease steadily until it reaches the lowest value 

possible which is roughly about 31 meV for all the states. 

We observe a different scenario when (n=2) as we see that 

the (2s) state start off with a maximum binding energy 

around 119.7meV, since the probability density mostly 

centered, then grow smaller as we move the impurity away 

from the center, the other case when ℓ is different than 

zero, the probability density get pushed away from the 

center, which explains the overall weak binding energies 

at the center, since they only reach a peak value of 

60.47meV for the (2p) and 55.89meV for (2d) and 

55.05meV for the (2f) state, then follows by a decrease in 

the binding energy as we move the impurity with a slight 

increase since we have two peak values in the probability 

density, which is slightly clear in the (2d) and (2f). 

As we reduce the internal ZnS barrier’s thickness to 

Δ1=0.5nm, majority of states considered in this study 

remain to some extent invariant except for this particular 

states (1s), (2s) and (2p), as we can see in Fig. 5, they 

experience a binding energy increase especially at the core 
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ZnO, most drastic change is experienced by the states with 

zero angular momentum, the ground state’s (1s) binding 

energy increased to 75.65meV at the center and peaked at 

91.84meV when r0=2.42nm, while the (2s) state reached a 

maximum value of 173.29meV at the center core, as for 

the (2p) state which increased to 58.28meV at the center 

and peaked at 64.21meV around r0=1.41nm, all other 

states experienced a miniscule binding energy increase 

which is difficult to spot on, since the dash lines which 

correspond to Δ1=0.5nm are nearly on top of the 

continuous curves which belongs to the case where 

Δ1=1.25nm, this behavior can be further understood by 

comparing it with the probability density previously 

mentioned in Figs. 3 and 4, we can say briefly that if the 

barrier thickness Δ1 is reduced, the probability of electron 

tunneling through the barrier increases exponentially, 

which allows for extra states beyond the barrier despite the 

lack of energy. 

 

 
 

(a) 

 

 
 

(b) 

 

Fig. 6. Variation of (a) the absolute Value of the 

perturbed Transition Dipole Moment (b) the energy 

difference E21, for the (1s) to (1p) transition when 

Δ1=0.5nm (dark blue and light blue) and Δ1=1.25nm (red 

and brown) (color online) 

 

Next we look at a crucial parameter required to the 

computation for optical properties, such as the absorption 

coefficient (AC), which is the transition dipole moment 

briefly noted TDM, given in Fig. 6(a) as a function of the 

donor impurity’s position, the transition in question here in 

this paper is a (1s) to (1p) state transition for a couple 

values of ZnS barrier’s thickness, while including the 

impurity-less case shown as a constant dash line as a 

reference, we observe at first glance that the overall value 

of the TDM when the ZnS barrier width equal to 

Δ1=1.25nm is noticeably superior to the case when the 

barrier thickness is reduced to 0.5nm, this fact even holds 

when the donor impurity is absent from the quantum dot, 

aside from that we see that both cases vary in the same 

manner when we shift the impurity away from the center, 

we see that as soon as we introduce the impurity at the 

center of the dot, we see a reduction in the magnitude of 

the TDM, however just as we start moving the impurity 

from the center we observe a rising in the TDM magnitude 

and maxing out as we reach the neighborhood of 

r0=3.0nm, right after that it follows by a diminishing in its 

value as the impurity gets further away from the high 

probability density positions which make the value of the 

TDM to converge gradually toward the vicinity of the 

impurity-less case. 

 

 
 

(a) 

 
 

(b) 

 

Fig. 7. Linear Absorption coefficient for a (1s) to (1p) 

transition for (a) Δ1=0.5nm (b) Δ1=1.25nm (color online) 

 

Fig. 7 shows variation of positions which the linear 

absorption peaks (AC) takes as a function of the impurity 

position along the z-direction for a transition state from 

(1s) to (1p), we consider for the first case a barrier 
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thickness of Δ1=0.5nm given in  Fig. 7(a) as we introduce 

the impurity at the center, the (AC) peak exhibit a blue-

shift while its magnitude rises up, however as we start to 

move the impurity away from the center we see a slight 

red shift as the energy difference decrease with a very 

small amount as we see in Fig. 6(b) (blue curve), as we 

keep moving the impurity the difference of energy keep 

increasing until summiting around 67.54meV at r0=2.4nm, 

then we see a red shift with a magnitude increase since the 

TDM keep increasing and reach a maximum value at 

r0=3nm as we see in Fig. 6(a) (blue curve), if we continue 

moving the impurity pass 3nm the energy difference 

decrease with a lowering of the magnitude converging to 

the value of the impurity-less case. As we make the barrier 

thickness a bit wider equal to Δ1=1.25nm, we observe that 

the overall magnitude of TDM get higher than the 

previous case, while the energy difference decreases 

noticeably both at the center and the edge of the dot, which 

create a more apparent blue-shift as we vary the radius of 

the impurity from the center of the dot until r0=2.54nm 

reaching a maximum difference of 66.41meV as shown in 

Fig. 6(b) (red dashed curve), when we surpasses this value 

we observe a red-shift with a magnitude decrease while 

converging to the case with no impurity both energy-wise 

and TDM-wise as we reach the edge of the dot. 

 
 
4. Conclusion 
 

In this study, the Binding energy, transition dipole 

moment (TDM) and the linear absorption coefficient (AC) 

for a ZnO/ZnS multi-shell spherical quantum dot under the 

influence of an off-center donor impurity have been 

investigated, using the compact-density matrix formalism 

and an iterative method for the time dependent perturbing 

AC potential in the electric dipole approximation, then by 

using perturbed eigenstate computed by the static non 

degenerate perturbation method generated by the off-

center impurity potential within the effective mass 

approximation, we have calculated the binding energy for 

the ground state and several excited states while varying 

the coordinates of the donor impurity, furthermore we 

computed the variation of the transition dipole moment as 

a function of the position of the off-center donor impurity, 

finally we use all those results to calculate the absorption 

coefficient, all computations done have been made with 

two distinctive values of the ZnS interior barrier thickness. 

We have shown that the position of the donor impurity is 

capable of modifying the electronic and optical properties 

of Multi shell Quantum dot, while keeping the dot size 

fixed. 
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